Electrical and thermal conduction in atomic layer deposition nanobridges down to 7 nm thickness.

نویسندگان

  • Shingo Yoneoka
  • Jaeho Lee
  • Matthieu Liger
  • Gary Yama
  • Takashi Kodama
  • Marika Gunji
  • J Provine
  • Roger T Howe
  • Kenneth E Goodson
  • Thomas W Kenny
چکیده

While the literature is rich with data for the electrical behavior of nanotransistors based on semiconductor nanowires and carbon nanotubes, few data are available for ultrascaled metal interconnects that will be demanded by these devices. Atomic layer deposition (ALD), which uses a sequence of self-limiting surface reactions to achieve high-quality nanolayers, provides an unique opportunity to study the limits of electrical and thermal conduction in metal interconnects. This work measures and interprets the electrical and thermal conductivities of free-standing platinum films of thickness 7.3, 9.8, and 12.1 nm in the temperature range from 50 to 320 K. Conductivity data for the 7.3 nm bridge are reduced by 77.8% (electrical) and 66.3% (thermal) compared to bulk values due to electron scattering at material and grain boundaries. The measurement results indicate that the contribution of phonon conduction is significant in the total thermal conductivity of the ALD films.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical and thermal conduction in ultra-thin freestanding atomic layer deposited W nanobridges.

Work presented here measures and interprets the electrical and thermal conductivities of atomic layer deposited (ALD) free-standing single film and periodic tungsten and aluminum oxide nanobridges with thicknesses from ∼5-20 nm and ∼3-13 nm, respectively. Electrical conductivity of the W films is reduced by up to 99% from bulk, while thermal conductivity is reduced by up to 91%. Results indicat...

متن کامل

Thermal and electrical conduction in ultrathin metallic films: 7 nm down to sub-nanometer thickness.

For ultrathin metallic films (e.g., less than 5 nm), no knowledge is yet available on how electron scattering at surface and grain boundaries reduces the electrical and thermal transport. The thermal and electrical conduction of metallic films is characterized down to 0.6 nm average thickness. The electrical and thermal conductivities of 0.6 nm Ir film are reduced by 82% and 50% from the respec...

متن کامل

Interfacial, Electrical, and Band Alignment Characteristics of HfO2/Ge Stacks with In Situ-Formed SiO2 Interlayer by Plasma-Enhanced Atomic Layer Deposition

In situ-formed SiO2 was introduced into HfO2 gate dielectrics on Ge substrate as interlayer by plasma-enhanced atomic layer deposition (PEALD). The interfacial, electrical, and band alignment characteristics of the HfO2/SiO2 high-k gate dielectric stacks on Ge have been well investigated. It has been demonstrated that Si-O-Ge interlayer is formed on Ge surface during the in situ PEALD SiO2 depo...

متن کامل

Improved Thermal Stability of NiSi Nanolayer in Ni-Si Co-sputtered Structure

Electrical, structural and morphological properties of Ni silicide films formed in Ni(Pt 4at.% )/Si(100) and Ni0.6Si0.4(Pt4at.% )/Si(100) structures at various annealing temperatures ranging from 200 to 1000 oC were studied. The Ni(Pt) and Ni0.6Si0.4(Pt) films with thickness of 15 and 25 nm were deposited by RF magnetron co-sputtering method, respectively.  The annealing process of the structur...

متن کامل

Electrochemical Monitoring of TiO2 Atomic Layer Deposition by Chronoamperometry and Scanning Electrochemical Microscopy

The scanning electrochemical microscope (SECM) was used to characterize the atomic layer deposition (ALD) of TiO2 on indium-doped tin oxide (ITO) substrates by studying electron transfer through pores in the thin films (1−5 nm thickness). The extent of electron transfer, and thus the porosity of the films, was evaluated by transient electrochemistry. These studies show that ALD deposition of Ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 12 2  شماره 

صفحات  -

تاریخ انتشار 2012